Логика – наука о законах и формах мышления
Высказывание (суждение) – некоторое предложение, которое может быть истинно (верно) или ложно
Утверждение – суждение, которое требуется доказать или опровергнуть
Рассуждение – цепочка высказываний или утверждений, определенным образом связанных друг с другом
Умозаключение – логическая операция, в результате которой из одного или нескольких данных суждений получается (выводится) новое суждение
Логическое выражение – запись или устное утверждение, в которое, наряду с постоянными, обязательно входят переменные величины (объекты). В зависимости от значений этих переменных логическое выражение может принимать одно из двух возможных значений: ИСТИНА (логическая 1) или ЛОЖЬ (логический 0)
Сложное логическое выражение – логическое выражение, составленное из одного или нескольких простых (или сложных) логических выражений, связанных с помощью логических операций.
Логические операции и таблицы истинности
A
B
F
1
1
1
1
0
0
0
1
0
0
0
0
F = A & B.
Логическое умножение КОНЪЮНКЦИЯ
A
B
F
1
1
1
1
0
0
0
1
0
0
0
0
F = A & B.
Логическое умножение КОНЪЮНКЦИЯ
- это новое сложное выражение будет истинным только тогда, когда истинны оба исходных простых выражения. Конъюнкция определяет соединение двух логических выражений с помощью союза И.
A | B | F |
1 | 1 | 1 |
1 | 0 | 1 |
0 | 1 | 1 |
0 | 0 | 0 |
F = A + B
Логическое сложение – ДИЗЪЮНКЦИЯ - это новое сложное выражение будет истинным тогда и только тогда, когда истинно хотя бы одно из исходных (простых) выражений. Дизъюнкция определяет соединение двух логических выражений с помощью союза ИЛИ
A
неА
1
1
1
0
Логическое отрицание : ИНВЕРСИЯ - если исходное выражение истинно, то результат отрицания будет ложным, и наоборот, если исходное выражение ложно, то результат отрицания будет истинным/ Данная операция означает, что к исходному логическому выражению добавляется частица НЕ или слова НЕВЕРНО, ЧТО
A
B
F
1
1
1
1
0
0
0
1
1
0
0
1
A
неА
1
1
1
0
A
B
F
1
1
1
1
0
0
0
1
1
0
0
1
Логическое следование: ИМПЛИКАЦИЯ - связывает два простых логических выражения, из которых первое является условием (А), а второе (В)– следствием из этого условия. Результатом ИМПЛИКАЦИИ является ЛОЖЬ только тогда, когда условие А истинно, а следствие В ложно. Обозначается символом "следовательно" и выражается словами ЕСЛИ … , ТО …
A
B
F
1
1
1
1
0
0
0
1
0
0
0
1
Логическая равнозначность: ЭКВИВАЛЕНТНОСТЬ - определяет результат сравнения двух простых логических выражений А и В. Результатом ЭКВИВАЛЕНТНОСТИ является новое логическое выражение, которое будет истинным тогда и только тогда, когда оба исходных выражения одновременно истинны или ложны. Обозначается символом "эквивалентности"
A
B
F
1
1
1
1
0
0
0
1
0
0
0
1
Порядок выполнения логических операций в сложном логическом выражении:
1. инверсия
2. конъюнкция
3. дизъюнкция
4. импликация
5. эквивалентность
Для изменения указанного порядка выполнения операций используются скобки.
Построение таблиц истинности для сложных выражений:
Количество строк = 2n + две строки для заголовка (n - количество простых высказываний)
Количество столбцов = количество переменных + количество логических операций
При построении таблицы надо учитывать все возможные сочетания логических значений 0 и 1 исходных выражений. Затем – определить порядок действий и составить таблицу с учетом таблиц истинности основных логических операций.
ПРИМЕР: составить таблицу истинности сложного логического выражения D = неA & ( B+C )
А,В, С - три простых высказывания, поэтому :
количество строк = 23 +2 = 10 (n=3, т.к. на входе три элеманта А, В, С)
количество столбцов : 1) А
2) В
3) С
4) не A это инверсия А (обозначим Е)
5) B + C это операция дизъюнкции (обозначим F)
6) D = неA & ( B+C ), т.е. D = E & F это операция конъюнкции
1 | 2 | 3 | 4 | 5 | 6 |
А | В | С | E = не А (не 1) | F = В+С (2+3) | D = E&F (4*5) |
1 | 1 | 1 | 0 | 1 | 0 |
1 | 1 | 0 | 0 | 1 | 0 |
1 | o | 1 | 0 | 1 | 0 |
1 | o | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 1 | 1 | 1 |
0 | 0 | 1 | 1 | 1 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |